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SUMMARY

In the authors’ own words, in the context of “difficult” word
recognition, this literature documents the success of,
a network that extracted features by repeatedly con-
volving a set of narrow weight patterns with the con-
tents of a sliding window into the input.

This is a widely referenced early work that lays foundation for
1-D convolution based approaches in the recent advances, like
Jasper and its derivatives.

See also: Dataset to understand the problem better.
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[...] the Viterbi-aligned speech
fragments contained enough
alignment errors to motivate a
shift-invariant [model]

Ref: Viterbi Alignment
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m Neural networks are universal approximators
m Convolution controls model size; and

>

m Pooling leads to positional invariance.
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be a set of (y,x) pairs; x being the input vector, and y € Z>
being the labels.

be input vector; C = 16 being number of channels; and Tbeing
temporal resolution.

be 1-D convolutional neural network, with its output being a
T long sequence of K dimensional vector, representing word
probabilities; K being the vocabulary size and € being network
params.

be whole number to one-hot vector converter

be an operator that computes L, norm for each row vector in
the tensor, defined here for mathematical convenience.

be element-wise exponentiation operation, defined here for
mathematical convenience.

be Euclidean distance between two vectors.



TDNN model for speech command

Where,
classification may be summarised ere
mathematically as a learnt function fwith 0, =argmin E [A(y, fix;0))]
optimal parameters 0., so that label is 0 yx~data
predicted as, fix;0) = || 2(x; 9)||g,row
= argma fix; 6, AF) = Ap (1), )
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400 samples
the four words, “bee, dee, ee,” and
“vee” [B, D, E, and V] were used;
earlier IBM research had shown that
these four words were the most con-
fusable members of the E-set of the
alphabet.
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FEATURE EXTRACTION

Initial spectrogram feature
m was extracted from 150 ms waveform
m containing log energy values and

m bearing shape 128 x 48; 128
frequencies x48 frames each lasting 3
ms.

In an experiment with input feature size, it
was observed, however that

m 16 X 12 input-based; 16 frequency
bands on linear scale x12 frames each
lasting 12 ms

m 2-layer hidden model

exhibited the best performance;



FEATURE EXTRACTION

[...] the program converted our 150 ms waveform sam-
ples into spectrograms containing 128 log energies
ranging up to 8 kHz, and 49 time frames of 3 ms each.
The first frame of each spectrogram was then discarded
so that there would be 48 time steps (a highly factor-
izable number), and the DC bias com- ponent of each
frame was set to zero. Because each of the 48 time
frames represented 3 ms, the final duration of the spec-
trograms was 144 ms.

(Adapted from the paper)
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m In a prior art at IBM, a hidden Markov
model (HMM) was used to model the
distribution of labels and spoken word.

m The Viterbi search listed the most likely
sequence of labels, corresponding to
each frame of utterance in a spoken

word; where the word identity was
known.
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In such an experiment by the IBM (the

authors say)
These labels were used to extract a
150 ms salient section of each utter-
ance which included 100 ms before
the first frame that was labelled “E”
(this region should contain the con-
sonant), plus 50 ms of the vowel.
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HMM MODEL DETAILS (FYI)

Details of the HMM Model in the experiment by IBM

[...] the words B, D, and V are modelled by a concatena-
tion of the state machines for noise, voiced consonant
onset, {B,.D,V}, E, E trail-off, and noise. The word E is
modelled by a concatenation of the state machines for
noise, E onset, E, E trail-off, and noise. The state ma-
chines contain 3 main states with associated transitions
to model the beginning, middle, and end of each phone.
The consonant and vowel machines include self-loops to
model steady-state portions of the acoustic signal, and
all of the machines include null transitions to model
short durations.
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