
jaspeR
ucs749: speech pRocessing and synthesis

Raghav B. Venkataramaiyer

CSED TIET Patiala India.

September 17, 2024

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details

5 exeRcise

metadata

tags Interspeech 2019
KeywoRds Computer Science - Computation and Language, Computer Science -

Machine Learning, Computer Science - Sound, Electrical Engineering and
Systems Science - Audio and Speech Processing

authoR Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev, O., Cohen, J. M.,
Nguyen, H., […]

uRl [arXiv] , [Papers With Code]

http://arxiv.org/abs/1904.03288
https://paperswithcode.com/paper/jasper-an-end-to-end-convolutional-neural#code

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details

5 exeRcise

datasets

LibriSpeech (ICASSP ’15)
WSJ: LDC93S6A (WSJ0), LDC94S13A (WSJ1)
2000hr Fisher+Switchboard (F+S): LDC2004S13, LDC2005S13, LDC97S62

https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.35111/ewkm-cg47
https://doi.org/10.35111/q7sb-vv12
https://doi.org/10.35111/da4a-se30
https://doi.org/10.35111/dz78-gx84
https://doi.org/10.35111/sw3h-rw02

ideas and stRategy

Time-delay Networks (TDNN) [PDF]
Connectionist Temporal Classification (CTC) ICML ’06 [ACM]
Wav2Letter (ICLR ’17)
Gated Convnets (for ASR) [arXiv]

https://www.cs.toronto.edu/~hinton/absps/langTDNN.pdf
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://arxiv.org/abs/1609.03193
https://arxiv.org/abs/1712.09444

technology

NoRmalisation Batch Norm; See also:[arXiv];
Weight Norm; See also: [arXiv];
Layer Norm; See also: [arXiv];

Activation ReLU
Clipped ReLU
Leaky ReLU

Gated Units Gated Linear Units
Gated Activation Units

https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1607.06450

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details

5 exeRcise

ContRibution

Jasper Model; and Dense Residual Topology;
Evidence-based insights on convergence and non-convergence;
NovoGrad Solver (like Adam);
WER improvement on LibriSpeech test-clean.

jaspeR model

All figures and tables repeated here from the paper [LLGL+19].
Model search across
3 types of noRmalisation Batch Norm, Weight Norm, Layer Norm;
3 types of activations ReLU, clipped ReLU, Leaky ReLU;
2 types of Gates Gated Linear Units, Gated Activation Units;
ARchitectuRe B× R parameterisation, Dense Residual.

jaspeR B× R aRchitectuRe

FiguRe: Jasper B× R model: B: number
of blocks; R: number of sub-blocks.

Table: Jasper 10× 5

#B #S B K #C (out) Dropout
1 1 Conv1 11 (s=2) 256 0.2
2 5 B1 11 256 0.2
2 5 B2 13 384 0.2
2 5 B3 17 512 0.2
2 5 B4 21 640 0.3
2 5 B5 25 768 0.3
1 1 Conv2 29 (D=2) 896 0.4
1 1 Conv3 1 1024 0.4
1 1 Conv4 1 #graphemes 0

fundamental conv blocK

The fundamental conv block with
Conv 7→ Batch Norm 7→ ReLU 7→ Dropout
progression

jaspeR blocK

The fundamental Conv Block (aka Sub-Block) is
repeated R times, with a residual connection from
inputs to the final block as in figure, to create a
Jasper Block.

B× R again

The Jasper Block is repeated B times to create the
B× R architecture.

jaspeR dense Residual aRchitectuRe

FiguRe: Jasper Dense Residual Model

The dense residual architecture builds on
top of jasper residual architecture; and
provides skip connections to the final block
from each of the previous blocks.
I.e. within a block, the final sub-block
receives a skip-connection from each of the
previous sub-blocks; and
on the whole, the final block receives skip
connections from each of the previous
blocks.

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details

5 exeRcise

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details
Normalisation
Sigmoid Activation
Rectifier Activation
Gating
Word Error Rate

5 exeRcise

covaRiate shift

One of the challenges of deep
learning is that the gradients
with respect to the weights in
one layer are highly dependent
on the outputs of the neurons
in the previous layer especially
if these outputs change in a
highly correlated way.
— Layer Normalisation Paper

http://arxiv.org/abs/1607.06450

batch noRm

FiguRe: Courtesy: Batch Norm Paper

https://arxiv.org/abs/1502.03167

weight noRm

Each neuron on an artificial neural network may be
represented as,

y = ϕ(w · x+ b)

where,
x is k dimensional vector of input features,
w is k dimensional vector of learnable weights,
b is a (learnable) scalar bias term, and
ϕ denotes element-wise non-linearity.

weight noRm

The key idea in weight normalisation is
to re-parameterise the weight vector, as

w =
g
‖v‖

v

so that,
v is k dimensional vector of learnable
weights,
g is a learnable scalar parameter, and
‖w‖ = g, independent of v.

weight noRm

Instead of working with g directly, we
may also use an exponential
parameterisation for the scale,

g = es

where, s is a log-scale learnable scalar
parameter.
For more details, please see §2.1 and
§2.2 of the weight norm paper.

http://arxiv.org/abs/1602.07868

layeR noRm

Summarising Batch Norm
The lth layer in a feed forward neural network with inputs hl

and weight matrix Wl and non-linear activation f, may be
written as,

ali = wl
:,i
⊤hl hl+1

i = f(ali + bli)

A Batch Norm may be summarised as,

hl+1
i = f(âli + bli) âli =

gli
σl
i
(ali − µl

i)

µl
i = E

x∼P(x)

[
ali
]

σl
i =

√
E

x∼P(x)

[(
ali − µl

i
)2]

layeR noRm

A Batch Norm may be summarised as,

hl+1
i = f(âli + bli)

âli =
gli
σl
i
(ali − µl

i)

µl
i = E

x∼P(x)

[
ali
]

σl
i =

√
E

x∼P(x)

[(
ali − µl

i
)2]

The authors say,
It is typically impractical to [exactly]
compute the expectations [in the adjoining
eqn’s]; since
it would require forward passes through the
whole training dataset with the current set
of weights;
Instead, µ and σ are estimated using the
empirical samples from the current
mini-batch.

layeR noRm

In certain cases, the covariate shift is
was observed to be more profound at
layer level by the authors. The authors
say,

[…] Notice that changes in the
output of one layer will tend to
cause highly correlated changes
in the summed inputs to the
next layer, especially with ReLU
units whose outputs can change
by a lot.

We, thus, compute the layer normaliza-
tion statistics over all the hidden units in
the same layer as follows:

µl
i = µl =

1

H

H∑
i=1

ali

σl
i = σl =

√√√√ 1

H

H∑
i=1

(
ali − µl

)
i.e. µl and σl are same for all neurons in the
same layer.

compaRing noRmalisation mechanisms

FiguRe: Courtesy: Layer Norm Paper

http://arxiv.org/abs/1607.06450

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details
Normalisation
Sigmoid Activation
Rectifier Activation
Gating
Word Error Rate

5 exeRcise

eRRoR function

FiguRe: Image Courtesy: Wikipedia

erf z = 2√
π

∫ z

0
e−t2dt

https://commons.wikimedia.org/wiki/File:Error_Function.svg

sigmoid (logistic Function)

FiguRe: Image Courtesy: Wikipedia

σ(x) =
1

1 + e−x

=
ex

1 + ex

= 1− σ(−x)

https://commons.wikimedia.org/wiki/File:Logistic-curve.svg

otheR sigmoidal Functions

FiguRe: Image Courtesy: Wikipedia

Hyperbolic Tangent

tanh x =
ex − e−x

ex + e−x

https://commons.wikimedia.org/wiki/File:Gjl-t(x).svg

otheR sigmoidal Functions

FiguRe: Image Courtesy: Wikipedia

Arc Tangent

y = arctan x

⇐⇒ x = tan y;

y ∈
[
−π

2
,
π

2

]

https://commons.wikimedia.org/wiki/File:Gjl-t(x).svg

otheR sigmoidal Functions

FiguRe: Image Courtesy: Wikipedia

Gudermannian Function

gd(x) =
∫ x

0

dt
cosh t

= 2 arctan
(

tanh
(x
2

))

https://commons.wikimedia.org/wiki/File:Gjl-t(x).svg

otheR sigmoidal Functions

FiguRe: Image Courtesy: Wikipedia

Algebraic Functions

f(x) =
x

(1 + |x|k)1/k

=
x

(1 + |x|)
; k = 1

=
x√

1 + x2
; k = 2

https://commons.wikimedia.org/wiki/File:Gjl-t(x).svg

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details
Normalisation
Sigmoid Activation
Rectifier Activation
Gating
Word Error Rate

5 exeRcise

RectifieR

FiguRe: Image Courtesy: Wikipedia

ReLU (Rectified Linear Unit)

ReLU(x) = x+

= max(0, x)

=
x+ |x|

2

=

{
x; if x > 0,

0; otherwise.

https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg

RectifieR

FiguRe: Image Courtesy: Wikipedia

Clipped ReLU

cReLU(x; a) = max(0,min(a, x))

e.g. ReLU6 in [Pytorch] , [Keras]

https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg
https://pytorch.org/docs/stable/generated/torch.nn.ReLU6.html#relu6
https://keras.io/api/layers/activations/#relu6-function

RectifieR

FiguRe: Image Courtesy: Wikipedia

Parametric and Leaky ReLU

PReLU(x; a) =
{
x; if x > 0,

ax; otherwise.
LeakyReLU(x) = PReLU(x, 0.01)

https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg

RectifieR

FiguRe: Image Courtesy: Wikipedia

GELU (Gaussian-error linear unit)

GELU(x) = x · Φ(x)
∂

∂x
GELU(x) = x · Φ′(x) + Φ(x)

where Φ(x) = Pr(X ⩽ x) is the cumulative
Gaussian distribution.

https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details
Normalisation
Sigmoid Activation
Rectifier Activation
Gating
Word Error Rate

5 exeRcise

vanishing/exploding gRadient pRoblem

Hochreiter’s work formally identified a major reason:
Typical deep NNs suffer from the now famous problem
of vanishing or exploding gradients. With standard ac-
tivation functions (Sec. 1), cumulative backpropagated
error signals (Sec. 5.5.1) either shrink rapidly, or grow
out of bounds. In fact, they decay exponentially in the
number of layers or CAP depth (Sec. 3), or they explode.
This is also known as the long time lag problem.

See also: Deep Learning by Jurgen Schmidhuber

https://doi.org/10.1109/9780470544037.ch14
https://arxiv.org/abs/1404.7828

gating histoRy

Gating was introduced in the LSTM paper in ’97, in order
to address vanishing/exploding gradient problem.
Simply put, gating mechanism is element-wise
multiplication of input vector with a gate-activation
vector.

https://ieeexplore.ieee.org/abstract/document/6795963

gating histoRy

The gate, in turn, is activated by looking at the input
vector itself. For example, a basic gate would be
formulated as,

y = g⊗ x
g = σ⊗(Wx+ b)

where,
σ⊗(x) is the element-wise sigmoid activation of input vector
x; and
⊗ represents element-wise multiplication.

gating histoRy

For a more involved use-case, let an RNN be defined for T time
steps, with

Given inputs as {z1, . . . , zT};
Cell States, {c1, . . . , cT};
Hidden States, {h1, . . . ,hT};
Given initial states as c0,h0;
Neural Network Φ(z, c,h) to compute pre gate
activation;

gating histoRy (lstm)

∀t ∈ {1, . . . , T},

x← Φ(zt, ct−1,ht−1)

i← σ⊗(Wix+ Uiht−1 + bi)
f← σ⊗(Wfx+ Ufht−1 + bf)
o← σ⊗(Wox+ Uoht−1 + bo)
g← tanh⊗(Wgx+ Ught−1 + bg)
ct ← f⊗ ct−1 + i⊗ g
ht ← o⊗ tanh⊗ ct

gating histoRy (gRu)

∀t ∈ {1, . . . , T},

x← Φ(zt, ct−1,ht−1)

r← σ⊗(Wrx+ Urht−1 + br)
h̃← tanh⊗(Whx+ Uh(r⊗ ht−1) + bh)
ct ← σ⊗(Wcx+ Ucht−1 + bc)
ht ← ct ⊗ ht−1 + (1− ct)⊗ h̃

gating histoRy (Read moRe)

See also:
[Medium] Gating Mechanisms
(Blog by Eugene Shevchenko);
[arXiv] Jacobian Spectrum of Gates
(Fig.1; Theory of Gating)

https://medium.com/@eugenesh4work/gating-mechanisms-in-neural-networks-dc83a0bdb8c3
https://medium.com/@eugenesh4work/gating-mechanisms-in-neural-networks-dc83a0bdb8c3
https://arxiv.org/abs/2007.14823
https://arxiv.org/abs/2007.14823

gated lineaR unit

In the context of speech processing,
let

X̃ = W ∗ X;
X̃ ∈ Rn×(·),

W ∈ Rn×m×k,

X ∈ Rm×(·)

represent a 1-D convolution operation
with kernel size k, input filters m and
output filters n.

gated lineaR unit

A gated linear unit (GLU) wraps a
convolution layer with a linear
activation and sigmoid gate as follows,

hl(X) = (W ∗ X+ B)⊗ σ⊗(V ∗ X+ C)

Since the element-wise multiplication is
a symmetric operation, this may as well
be interpreted as a linear gate over a
sigmoid activation.

gated lineaR unit

With hardware acceleration, this
operation may be implemented with
single parallelised convolution
operations with double filter size,
namely W ∈ R2n×m×k, and bias
B ∈ R2n×(·), as follows,

X̃ = W ∗ X+ B

hl(X) = X̃:n ⊗ σ⊗(X̃n:)

See also: Gated Conv-Net Paper [arXiv]

https://arxiv.org/abs/1612.08083

gated activation unit

A gated activation unit (GLU) wraps a convolution layer with
a hyperbolic tangent activation and sigmoid gate as follows,

X̃ = W ∗ X+ B

hl(X) = tanh⊗(X̃:n)⊗ σ⊗(X̃n:)

Since the element-wise multiplication is a symmetric
operation, this may equally well be interpreted as a hyperbolic
tangent gate and sigmoid activation.
See also: Conditional PixelCNN Paper [NeurIPS ’16]

https://proceedings.neurips.cc/paper_files/paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details
Normalisation
Sigmoid Activation
Rectifier Activation
Gating
Word Error Rate

5 exeRcise

woRd eRRoR Rate

Word Error Rate is inspired by “word recognition”
accuracy measure in cognitive psychology, which is “the
ability of a reader to recognize written words correctly
and virtually effortlessly.”

woRd eRRoR Rate

The experiments generally test the ability to recognise
“isolated words,” without additional contextual
information. (Trivia: testing whose ability, the reader’s or
the model’s?)

woRd eRRoR Rate

WER is a special type of normalised edit distance;
computed as

the normalised number operations
required to transform reference (target) to hypothesis
(prediction).
The set of operations consist of substitution, deletion and
insertion.

woRd eRRoR Rate

Formally, if Y is the reference set and Y′

is the hypothesis,

WER(Y→ Y′) =
|Y′ \ Y|+ [|Y| − |Y′|]+

|Y|

where \ is the set difference operator.

Intuitively, we resolve for two cases, i.e.
either Y′ is larger than Y or otherwise.
In case of former, Y′ \ Y would include the
set of substitutions as well as insertions.
In case of latter, Y′ \ Y would include the set
of substitutions only; hence, the additional
term of difference in size is added to
account for the number of deletions.
The denominator is a normalisation factor.

outline

1 metadata

2 pRioR aRt

3 ContRibution

4 details

5 exeRcise

exeRcise

1 If the following equation describes
the jasper model,

θ∗ = arg min
θ

E
(X,Y)∼DX×Y

[∆(Y,F(X; θ))]

Define X, Y,F , θ, θ∗.

exeRcise

2 Formally define MSE(y, ỹ) as
mean-squared error measure
between target and prediction
vectors.

exeRcise

3 What are the conditions under
which
MSE(y, ỹ) ≡ ∆E(y, ỹ) ≡ ‖y−ỹ‖2F?

exeRcise

4 How is a CTC Loss different from
MSE Loss as a training objective?

exeRcise

5 In order to learn a model for
sequence-to-sequence mapping
like speech to text, recommend
whether to use
Softmax-Cross-Entropy
Classification Loss or
Connectionist Temporal
Classification Loss. Also justify
your recommendation.

	metadata
	prior art
	Contribution
	details
	Normalisation
	Sigmoid Activation
	Rectifier Activation
	Gating
	Word Error Rate

	exercise

