### JASPER DERIVATIVES

UCS749: SPEECH PROCESSING AND SYNTHESIS

Raghav B. Venkataramaiyer

CSED TIET Patiala India.

November 19, 2024

# 1 METADATA

2 PRIOR ART

**3 QUARTZNET** 

# 4 CITRINET

**5** MATCHBOXNET

KEYWORDS Computer Science - Computation and Language, Computer Science -Machine Learning, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing INCLUDES QuartzNet, CitriNet & MatchboxNet



# 2 PRIOR ART

**3 QUARTZNET** 

## **4** CITRINET

**5** MATCHBOXNET

<□> <0<>

JASPER



FIGURE: Jasper  $B \times R$  model: *B*: number of blocks; *R*: number of sub-blocks.



€ 990













solves the same problem as jasper

## QUARTZNET ARCHITECTURE



#### FIGURE: Quartznet Architecture

- Uses separable conv instead of conv.
- 1D Conv (along time) → 1D Conv (along frequency) → Batch Norm → ReLU instead of
- 1D Conv  $\rightarrow$  Batch Norm  $\rightarrow$  ReLU  $\rightarrow$  Dropout.



 $9\times9$  separable Gaussian filter with constituents as

- $\mathcal{N}(x; 0, 0.3)$  along the x-axis; and
- $\mathcal{N}(y; 0, 0.15)$  along the y-axis;

each resolved within limits  $\left[-1,1\right]$  into 9 discrete units.



$$F_x = \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}}$$
$$\mu_x = 5 \qquad \sigma_x = \frac{4}{3}$$

▲□▶▲□▶▲□▶▲□▶ = のへで

### SEPARABLE FILTERS

$$G_y = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(y-\mu_y)^2}{2\sigma_y^2}}$$
$$\mu_y = 5 \qquad \sigma_y = \frac{2}{3}$$

▲□▶▲□▶▲□▶▲□▶ = のへで

# SEPARABLE FILTERS



$$M_{xy} = F_x \times G_y$$

▲□▶▲□▶▲□▶▲□▶ = のへで

### SEPARABLE CONV



If *F* and *G* constitute a separable filter M so that  $M(x, y) = F(x) \times G(y)$ , the following equivalence for convolution  $\otimes$  over a given signal *X*, holds true,

$$M \otimes X \equiv F \otimes G \otimes X$$
$$\equiv G \otimes F \otimes X$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

### LEARNABLE SEPARABLE CONV



If *M* is a learnable 2D filter with size  $k \times k$ ; the num params is  $k^2$ 

If M is also separable into F and G, then, for a given signal X,

 $M \otimes X \equiv F \otimes G \otimes X$ ,

with F and G bearing k params each. Hence, num params becomes 2k.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

In Jasper, for a given convolution layer,

- Let inputs be  $\mathbf{x} \in \mathbb{R}^{C_{\text{in}} \times t}$ ;
- Let outputs be  $\mathbf{y} \in \mathbb{R}^{C_{\text{out}} \times t'}$ ;
- Let 1D conv filter be of size *k*;
- num input time steps = t;
- num input channels =  $C_{in}$ ;
- num output channels =  $C_{out}$ ;
- num params required for each channel of ouptut =  $k \times C_{in}$
- num params required in total =  $k \times C_{in} \times C_{out}$

In Quartznet, the same op is implemented in 2 layers,

- $\blacksquare F(\mathbf{x}) \to \mathbf{y}' : \mathbf{y}' \in \mathbb{R}^{C_{\mathrm{in}} \times t'}$
- $\blacksquare \ G(\mathbf{y}') \to \mathbf{y}$
- *F* convolves over the time axis, separately for each frequency (input channel); hence num params = *k* × *C*<sub>in</sub>
- *G* convolves over the frequency axis, with same kernel for each time step; hence num params = *C*<sub>in</sub> × *C*<sub>out</sub>
- Total num params =  $k \times C_{in} + C_{in} \times C_{out}$



# 2 PRIOR ART

**3 QUARTZNET** 

# 4 CITRINET

#### **5** MATCHBOXNET

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

solves the same problem as jasper



Uses squeeze and excitation attention on top of conv + bn and before non-linear activation.

$$SE(\mathbf{x}) = \mathbf{x} \otimes F_{sc} \circ F_{ex} \circ F_{sq}(\mathbf{x})$$

where,  $\otimes$  is the Hadamard product (element-wise product) Conv is Time-channel separable Conv as in Quartznet.



Uses squeeze and excitation attention on top of conv + bn and before non-linear activation.

$$SE(\mathbf{x}) = \mathbf{x} \otimes F_{sc} \circ F_{ex} \circ F_{sq}(\mathbf{x})$$

where,  $\otimes$  is the Hadamard product (element-wise product) Conv is Time-channel separable Conv as in Quartznet.





Figure 1: A Squeeze-and-Excitation block.

The image is from the original squeeze and excitation paper; and shows SE in the context of 2D Conv. But recall that in the context of speech recognition we have 1D Conv; and the same concept is extended trivially.

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

#### SQUEEZE AND EXCITATION



Figure 1: A Squeeze-and-Excitation block.

 $F_{sq}(\mathbf{x}) = \bar{\mathbf{x}} = \frac{1}{T} \sum_{t} \mathbf{x}_{t} \text{ performs global average pooling;} \rightarrow 1 \times C$   $F_{ex}(\mathbf{x}) = \text{RELU}(W_{1}\mathbf{x} + \mathbf{b}_{1}) \text{ conv+RELU;} 1 \times C \rightarrow 1 \times c; \text{ typically } c < C;$  $F_{sc}(\mathbf{x}) = \text{sigmoid}(W_{2}\mathbf{x} + \mathbf{b}_{2}) \text{ conv+sigmoid;} 1 \times c \rightarrow 1 \times C;$ 

### RESULTS

Table 3: LibriSpeech: Citrinet vs Transducers, WER(%)

| Madal             | TM     | Test  |       | Params, |
|-------------------|--------|-------|-------|---------|
| Model             | LM     | clean | other | M       |
| ContextNet-L [14] | -      | 2.10  | 4.60  | 112.7   |
|                   | RNN    | 1.90  | 4.10  |         |
| Conformer-L[15]   | -      | 2.10  | 4.30  | 118     |
|                   | RNN    | 1.90  | 3.90  |         |
|                   | -      | 3.78  | 9.6   |         |
| Citrinet-256      | 6-gram | 3.65  | 8.06  | 9.8     |
|                   | Transf | 2.75  | 6.87  |         |
|                   | -      | 3.20  | 7.90  |         |
| Citrinet-384      | 6-gram | 2.94  | 6.71  | 21.0    |
|                   | Transf | 2.52  | 5.95  |         |
|                   | -      | 3.11  | 7.82  |         |
| Citrinet-512      | 6-gram | 2.40  | 6.08  | 36.5    |
|                   | Transf | 2.19  | 5.5   |         |
|                   | -      | 2.57  | 6.35  |         |
| Citrinet-768      | 6-gram | 2.15  | 5.11  | 81      |
|                   | Transf | 2.04  | 4.79  |         |
|                   | -      | 2.52  | 6.22  |         |
| Citrinet-1024     | 6-gram | 2.10  | 5.06  | 142     |
|                   | Transf | 2.00  | 4.69  |         |

Citrinet shows comparable performance with significantly lower number of params.



2 PRIOR ART

**3 QUARTZNET** 







 Uses a similar architecture as jasper for keyword spotting aka speech command recognition;

- Designed for devices with low computational and memory resources;
- SoTA performance with significantly fewer params.

Also,

■ Fixed length input (1 second long utterance).



Figure 1: MatchboxNet BxRxC model: B - number of blocks, R - number of sub-blocks, C - the number of channels. Table 1: MatchboxNet-3x2x64 model has B=3 blocks, each black has R=2 time-channel separable convolutional subblocks with C=64 channels, plus 4 additional sub-blocks: prologue - Conv1, and epilogue - Conv2, Conv3, Conv4).

| Block         | # Blocks | # Sub<br>Blocks | # Output<br>Channels | Kernel         |
|---------------|----------|-----------------|----------------------|----------------|
| Conv1         | 1        | 1               | 128                  | 11             |
| B1            | 1        | 2               | 64                   | 13             |
| B2            | 1        | 2               | 64                   | 15             |
| <b>B</b> 3    | 1        | 2               | 64                   | 17             |
| Conv2         | 1        | 1               | 128                  | 29, dilation=2 |
| Conv3         | 1        | 1               | 128                  | 1              |
| Conv4         | 1        | 1               | # classes            | 1              |
| Soft-max      |          |                 |                      |                |
| Cross-entropy |          |                 |                      |                |

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

### MATCHBOXNET ARCHITECTURE



Figure 1: MatchboxNet BxRxC model: B - number of blocks, R - number of sub-blocks, C - the number of channels.

Table 1: MatchboxNet-3x2x64 model has B=3 blocks, each black has R=2 time-channel separable convolutional subblocks with C=64 channels, plus 4 additional sub-blocks: prologue - Conv1, and epilogue - Conv2, Conv3, Conv4).

| Block         | # Blocks | # Sub<br>Blocks | # Output<br>Channels | Kernel         |
|---------------|----------|-----------------|----------------------|----------------|
| Conv1         | 1        | 1               | 128                  | 11             |
| B1            | 1        | 2               | 64                   | 13             |
| B2            | 1        | 2               | 64                   | 15             |
| <b>B</b> 3    | 1        | 2               | 64                   | 17             |
| Conv2         | 1        | 1               | 128                  | 29, dilation=2 |
| Conv3         | 1        | 1               | 128                  | 1              |
| Conv4         | 1        | 1               | # classes            | 1              |
| Soft-max      |          |                 |                      |                |
| Cross-entropy |          |                 |                      |                |

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

| Model              | # Parameters, K | Accuracy, %       | Reference |
|--------------------|-----------------|-------------------|-----------|
| ResNet-15          | 238             | $95.8 \pm 0.351$  | [17]      |
| DenseNet-BC-100    | 800             | 96.77             | [32]      |
| EdgeSpeechNet-A    | 107             | 96.80             | [29]      |
| MatchboxNet-3x1x64 | 77              | $97.21 \pm 0.067$ |           |
| MatchboxNet-3x2x64 | 93              | $97.48 \pm 0.107$ |           |

Table 2: MatchboxNet on Google Speech Commands dataset v1, the accuracy is averaged over 5 trials (95% Confidence Interval).

Table 3: MatchboxNet on Google Speech Commands dataset v2, the accuracy is averaged over 5 trials (95% Confidence Interval).

| Model                    | # Parameters, K | Accuracy, %       | Reference |
|--------------------------|-----------------|-------------------|-----------|
| Attention RNN            | 202             | 94.30             | [33]      |
| Harmonic Tensor 2D-CNN   | -               | 96.39             | [30]      |
| "Embedding + Head" Model | 385             | 97.7              | [31]      |
| MatchboxNet-3x1x64       | 77              | $96.91 \pm 0.101$ |           |
| MatchboxNet-3x2x64       | 93              | $97.21 \pm 0.072$ |           |
| MatchboxNet-6x2x64       | 140             | $97.37\pm0.110$   |           |