CONNECTIONIST TEMPORAL CLASSIFICATION

UCS749: SPEECH PROCESSING AND SYNTHESIS

Raghav B. Venkataramaiyer

CSED TIET Patiala India.

September 16, 2024

KEY OBSERVATION

- THE PROBLEM
- KEY CONTRIBUTION

IMPLEMENTATION

- KEY OBSERVATION
- THE PROBLEM
- **KEY CONTRIBUTION**

IMPLEMENTATION

AUTHOR Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J.

URL [ACM], [PDF from toronto.edu], [PDF from tum.de], [Pytorch] [Tensorflow] [Julia]

DATE 2006

BOOKTITLE Proceedings of the 23rd International Conference on Machine Learning

- type of neural network output and associated scoring function (for RNN's);
- to tackle sequence problems where the timing is variable;
- CTC refers to the outputs and scoring, and is independent of the underlying neural network structure.

For example, in speech audio there can be multiple time slices which correspond to a single phoneme. Since we don't know the alignment of the observed sequence with the target labels we predict a probability distribution at each time step. — Wikipedia

See also: https://distill.pub/2017/ctc/

2 KEY OBSERVATION

3 THE PROBLEM

4 **KEY CONTRIBUTION**

5 IMPLEMENTATION

An input waveform for the word HELLO may vary in the following ways,

- A quick and slow speaker may stretch it at varying lengths, *e.g.* HELLLOO vs HEELLLOOOO; and the same may be extend to syllable stresses and intonations when speaking in further detail;
- The start points and blanks may vary, *e.g.*

---HEE-LLOO- vs -HELLLOO-

We call this as an alignment problem, where given an alphabet, say $\{H, E, L, O\}$, and a sequence $[x_1, \ldots, x_T]$, find the correspondence.

- Inherent to this formulation, there's no way to distinguish between HELO vs HELLO.
- This problem is like mode collapse.
- To this end, the author introduces a special character called CTC blank *ϵ*, that suppresses mode collapse.
- **•** *E.g.* LLLL \rightarrow L in post-processing, but LL-LL \rightarrow LL.
- Hence, the alphabet now becomes $\{H, E, L, O, \epsilon\}$.
- This problem grows polynomially in alphabet size and exponentially in sequence size.

KEY OBSERVATION

THE PROBLEM

KEY CONTRIBUTION

IMPLEMENTATION

Minimise transcription mistakes from speech to text or handwriting to text, where the natural measure is a *label error rate* LER of a temporal classifier *h*, defined as follows.

$$ext{LER}(h, \mathbb{S}') = \mathop{\mathbb{E}}_{(\mathbf{x}, \mathbf{z}) \sim \mathbb{S}'} \left[rac{ ext{ED}(h(\mathbf{x}), \mathbf{z})}{|\mathbf{z}|}
ight]$$

where,

- $\mathbb{S}' \subset \mathcal{D}_{\mathcal{X} \times \mathcal{Z}}$ is the test sample;
- ED is the edit distance.

- KEY OBSERVATION
- THE PROBLEM
- KEY CONTRIBUTION

IMPLEMENTATION

The problem may be seen as,

$$Y_* = \arg \max_{Y} P(Y|X)$$

 $P(Y|X) = \sum_{A \in \mathcal{A}(X,Y)} \prod_{t=1}^{T} P_t(\mathbf{a}_t|X)$

where,

- $X \equiv [\mathbf{x}_1, \ldots, \mathbf{x}_n]$ be the input sequence;
- $Y \equiv [\mathbf{y}_1, \dots, \mathbf{y}_m]$ be the output sequence;
- $A \equiv [\mathbf{a}_1, \dots, \mathbf{a}_T]$ be an alignment between **x** and **y** also the network output; and
- $\mathcal{A}(X, Y)$ be such an alignment space;

KEY CONTRIBUTION (CONTD...)

INPUTS $X \in \mathbb{R}^{(\cdot) \times n}$ is a spectrogram-like audio input, like MFCC, providing *n* time step sequence of input.

- NETWORK OUTPUT (or RNN output) is the alignment $A \in \mathbb{R}^{|L'| \times T}$. Here $L' \equiv L \cup \epsilon$ is the alphabet augmented with CTC blank.
 - ALPHABET $Y \in \mathbb{R}^m$ (also known as Y_{mask} in some implementations) is the output sequence augmented by blanks, *e.g.* -HEL-LO- or HEL-LO for HELLO, as a sequence of indices; or seldom tokens dependent upon implementation detail.

 $\mathcal{A}(X, Y)$ is grows exponentially in the length of sequence, *i.e.* $\mathcal{O}(m^T)$ But similar to the HMM, a recursive definition enables us to compute the loss efficiently in $\mathcal{O}(m^2 T)$.

+ □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶</p>

- **2** KEY OBSERVATION
- **3 THE PROBLEM**
- 4 KEY CONTRIBUTION

5 IMPLEMENTATION

[Pytorch] [Tensorflow]

